If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2k-1)(2k+1)=k^2+(2k+1)
We move all terms to the left:
(2k-1)(2k+1)-(k^2+(2k+1))=0
We use the square of the difference formula
4k^2-(k^2+(2k+1))-1=0
We calculate terms in parentheses: -(k^2+(2k+1)), so:We get rid of parentheses
k^2+(2k+1)
We get rid of parentheses
k^2+2k+1
Back to the equation:
-(k^2+2k+1)
4k^2-k^2-2k-1-1=0
We add all the numbers together, and all the variables
3k^2-2k-2=0
a = 3; b = -2; c = -2;
Δ = b2-4ac
Δ = -22-4·3·(-2)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{7}}{2*3}=\frac{2-2\sqrt{7}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{7}}{2*3}=\frac{2+2\sqrt{7}}{6} $
| 5x4=4 | | 2*3-2(4x)+7=0 | | 6x+14=2x+26 | | 0.7x=-4.2 | | 45=v/2+17 | | 3(x-5)+3x=21 | | 58+1x/68=56 | | 2x-30+3x+40=180 | | 6-4d=9 | | 0=-4.9t²+4.25t+100 | | 1/4h=-20 | | -9n=-10-6 | | 4x-2.4=8 | | 6w+2+3w+17=10 | | x/5-18=-20 | | -20=s–17 | | 3+2x+32=x+23 | | 2(x-1)^2=-18 | | 0.5(4x+60)=50 | | 9(2x+3)=12x-6 | | -4.2x+31.5=-31.5 | | 2x^2-7=-31 | | x+3/2=x+9/5 | | 1x/38-91=-87 | | 11-8b=23-5b | | 8x+18=130 | | 3/4x+1/8=1/2x-15/6 | | 4.9t^2-15t+5=0 | | 2x-32+80=234 | | x=3/4(-8/1) | | (2x-32)+80=234 | | 4x(x+12)-5=79 |